Exercise 6.1 (Revised) - Chapter 7 - Cube & Cube Roots - Ncert Solutions class <u>8 - Maths</u>

Updated On 11-02-2025 By Lithanya

Chapter 6 - Cube & Cube Roots | NCERT Solutions for Class 8 Maths

Ex 6.1 Question 1.

Which of the following numbers are not perfect cubes:

(i) 216

(ii) 128

(iii) 1000

(iv) 100

(v) 46656

Answer.

(i) 216

2	216
2	108
2	54
3	27
3	9
3	3
	1

Prime factors of 216 = 2 imes 2 imes 2 imes 3 imes 3

Here all factors are in groups of 3's (in triplets) Therefore, 216 is a perfect cube number.

(11)	128

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $\begin{array}{l} \mbox{Prime factors of } 128=2\times2\times2\times2\times2\times2\times2\times2\\ \mbox{Here one factor 2 does not appear in a 3's group.} \end{array}$

Therefore, 128 is not a perfect cube. (iii) 1000

2	1000
2	500
2	250
5	125
5	25
5	5
	1

Prime factors of 1000 = 2X2X2X5X5X5Here all factors appear in 3's group. Therefore, 1000 is a perfect cube. (iv) 100

2	100
2	50
5	25
5	5
	1

Prime factors of 100 = 2 imes 2 imes 5 imes 5

Here all factors do not appear in 3's group. Therefore, 100 is not a perfect cube. (v) 46656

	10000
2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

Here all factors appear in 3 's group.

Therefore, 46656 is a perfect cube.

Ex 6.1 Question 2.

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:

(i) 243

(ii) 256

(iii) 72

(iv) 675

(v) 100

Answer.

(i) 243

Get More Learning Materials Here : 💴

3	243
3	81
3	27
3	9
3	3
	1

Prime factors of 243 = 3 imes 3 imes 3 imes 3 imes 3

Here 3 does not appear in 3's group.

Therefore, 243 must be multiplied by 3 to make it a perfect cube.

(ii) 256

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Prime factors of 256 = 2 imes 2 imes 2 imes 2 imes 2 imes 2 imes 2

Here one factor 2 is required to make a 3 's group. Therefore, 256 must be multiplied by 2 to make it a perfect cube.

(iii) 72

2	72
2	36
2	18
3	9
3	3
and C	1

Prime factors of 72 = 2 imes 2 imes 2 imes 3 imes 3

Here 3 does not appear in 3's group.

Therefore, 72 must be multiplied by 3 to make it a perfect cube. (iv) 675

3	675
3	225
3	75
5	25
5	5
	1

Prime factors of 675 = 3 imes 3 imes 3 imes 5 imes 5

Here factor 5 does not appear in 3 's group.

Therefore 675 must be multiplied by 5 to make it a perfect cube.

(v) 100

Get More Learning Materials Here : 🗾

2	100
2	50
5	25
5	5
a collection c	1

Prime factors of 100 = 2 imes 2 imes 5 imes 5

Here factor 2 and 5 both do not appear in 3's group.

Therefore 100 must be multiplied by 2 imes 5 = 10 to make it a perfect cube.

Ex 6.1 Question 3.

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:

(i) 81

(ii) 128

(iii) 135

(iv) 192

(v) 704

Answer.

(i) 81

3	81
3	27
3	9
3	3
	1

Prime factors of 81 = 3 imes 3 imes 3 imes 3

Here one factor 3 is not grouped in triplets.

Therefore 81 must be divided by 3 to make it a perfect cube. (ii) 128

2	128
2	64
2	32
2	<mark>16</mark>
2	8
2	4
2	2
2 2 3	1

Prime factors of 128 = 2 imes 2 imes 2 imes 2 imes 2 imes 2 imes 2

Here one factor 2 does not appear in a 3's group. Therefore, 128 must be divided by 2 to make it a perfect cube. (iii) 135

3	135
3	45
3	15
5	5
	1

Prime factors of 135 = 3 imes 3 imes 3 imes 5

Here one factor 5 does not appear in a triplet.

Therefore, 135 must be divided by 5 to make it a perfect cube.

(iv) 192

Get More Learning Materials Here : 🗾

2	192
2	96
2	48
2	24
2	12
2	6
3	3
8	1

Prime factors of $192 = 2 \mathrm{X} 2 \mathrm{X} 2 \mathrm{X} 2 \mathrm{X} 2 \mathrm{X} 2 \mathrm{X} 3$

Here one factor 3 does not appear in a triplet.

Therefore, 192 must be divided by 3 to make it a perfect cube. (v) 704

2	704	
2	352	-
2	176	
2	88	
2	44	
2	22	43 49
11	11	
	1	

Prime factors of 704 = 2X2X2X2X2X2X11

Here one factor 11 does not appear in a triplet.

Therefore, 704 must be divided by 11 to make it a perfect cube.

Ex 6.1 Question 4.

Parikshit makes a cuboid of plasticine of sides $5~{
m cm}, 2~{
m cm}, 5~{
m cm}$. How many such cuboids will he need to form a cube?

Answer.

Given numbers =5 imes2 imes5Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by 2 imes5 imes2=20 to make it a perfect cube. Hence he needs 20 cuboids.

<u>Exercise 6.2 (Revised) - Chapter 7 - Cube & Cube Roots - Ncert Solutions class</u> <u>8 - Maths</u>

Updated On 11-02-2025 By Lithanya

Share this to Friend on WhatsApp

Chapter 6 - Cube & Cube Roots | NCERT Solutions for Class 8 Maths

Ex 6.2 Question 1.

Find the cube root of each of the following numbers by prime factorization method:

(i) 64

(ii) 512

(iii) 10648

(iv) 27000

(v) 15625

(vi) 13824

(vii) 110592

(viii) 46656 (ix) 175616

(x) 91125

Answer.

(i) 64

2	64	
2	32	
2 2	16	
2	8	
2	4	
2	2	
	1	
	$= \sqrt[3]{2 imes 2 imes 2 imes 2}$	× 2 × 2
2	512	
2	256	
2	128	
2 2 2	64	
2	32	
2	16	
2	8	
2	4	
2	2	
	-	

Get More Learning Materials Here : 💻

CLICK HERE

 $\sqrt[3]{512} = \sqrt[3]{2 imes 2 imes 2$

 $= 2 \times 2 \times 2 = 8$ (iii) 10648

2	10648
2	5324
2	2662
11	1331
11	121
11	11
	1

 $\sqrt[3]{10648} = \sqrt[3]{2 imes 2 imes 2 imes 11 imes 11}$

=2 imes 11=22

(iv) 27000

2	27000
2	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
28 - 128 X. 23	1

 $\sqrt[3]{27000} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$

=2 imes 3 imes 5=30

(v) 15625

5	15625
5	3125
5	625
5	125
5	25
5	5
(1

 $\sqrt[3]{15625} = \sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$ $= 5 \times 5 = 25$ (vi) 13824

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

Get More Learning Materials Here : 🗾

2 110592 2 55296 2 27648 2 13824 2 6912 2 3456 2 1728 2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3 1 1		
2 27648 2 13824 2 6912 2 3456 2 1728 2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	110592
2 13824 2 6912 2 3456 2 1728 2 1728 2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	55296
2 6912 2 3456 2 1728 2 1728 2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	27648
2 3456 2 1728 2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	13824
2 1728 2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	6912
2 864 2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	3456
2 432 2 216 2 108 2 54 3 27 3 9 3 3	2	1728
2 216 2 108 2 54 3 27 3 9 3 3	2	864
2 108 2 54 3 27 3 9 3 3	2	432
2 54 3 27 3 9 3 3	2	216
3 27 3 9 3 3	2	108
3 9 3 3	2	54
3 3	3	27
	3	9
1	3	3
	38 - 33 38	1

=2 imes 2 imes 2 imes 2 imes 3=48

(viii) 46656

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

 $\sqrt[3]{46656} = \sqrt[3]{2 imes 2 imes 2$

=2 imes2 imes3 imes3=36

(ix) 175616

2	175616
2	87808
2	43904
2	21952
2	10976
2	5488
2	2744
2	1372
2	686
7	343
7	49
7	7
	1

Get More Learning Materials Here :

3	91125
3	30375
3	10125
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

Ex 6.2 Question 2.

State true or false:

(i) Cube of any odd number is even.

(ii) A perfect cube does not end with two zeroes.

(iii) If square of a number ends with 5, then its cube ends with 25.

(iv) There is no perfect cube which ends with 8.

(v) The cube of a two digit number may be a three digit number.

(vi) The cube of a two digit number may have seven or more digits.(vii) The cube of a single digit number may be a single digit number.

Answer.

(i) False Since, $1^3 = 1, 3^3 = 27, 5^3 = 125, \ldots$ are all odd. (ii) True Since, a perfect cube ends with three zeroes. e.g. $10^3 = 1000, 20^3 = 8000, 30^3 = 27000, \ldots$ so on (iii) False Since, $5^2 = 25, 5^3 = 125, 15^2 = 225, 15^3 = 3375$ (Did not end with 25) (iv) False Since $12^3=1728$ [Ends with 8] And $22^3 = 10648$ [Ends with 8] (v) False Since $10^3 = 1000$ [Four digit number] And $11^3 = 1331$ [Four digit number] (vi) False Since $99^3 = 970299$ [Six digit number] (vii) True $1^3 = 1$

[Single digit number] $2^3=8$

[Single digit number]

Get More Learning Materials Here : 💴

